ticularly important for applications to experiment.

The angle dependence of transition fields can be obtained for comparison with experiments on single crystals, and if only the c axis of the sample is defined, comparisons with experiment may be made by numerical averaging of the solutions over all in-plane angles. The material $\mathrm{VF_2}$, 13,14 a planar spiral with $q_0=96^\circ$, should be a good subject for this type of study. High-field magnetization $(H\perp c \text{ axis})$ at $T\ll T_N=7$ °K on this compound would permit an instructive application of the theory here described; behavior similar to that depicted in

Fig. 4 should be found, if as reported¹³ the inplane anisotropy is uniaxial and small.

ACKNOWLEDGMENTS

Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under grant number AFSOR 69-1745. The numerical calculations were done by the CDC 6400 digital computer of The Florida State University, partially supported by the grant GJ 367 of the U.S. National Science Foundation.

- ¹W. C. Koehler, J. Appl. Phys. <u>37</u>, 1056 (1966).
- ²R. L. Cohen, S. Hüfner, and K. W. West, Phys. Rev. 184, 263 (1969).
- ³A. Yoshimori, J. Phys. Soc. Japan <u>14</u>, 807 (1959).
- ⁴A. Herpin, P. Mériel, and J. Villain, Compt. Rend. <u>249</u>, 1334 (1959); A. Herpin and P. Mériel, J. Phys. Radium 22, 337 (1961).
- ⁵G. P. Felcher, J. Appl. Phys. <u>37</u>, 1056 (1966).
- ⁶T. Nagamiya, K. Nagata, and Y. Kitano, Progr. Theoret. Phys. (Kyoto) <u>27</u>, 1253 (1962).
- ⁷A. Herpin, P. Mériel, and J. Villain, J. Phys. Radium 21, 67 (1960).
- $^8\mathrm{Y}.$ Kitano and T. Nagamiya, Progr. Theoret. Phys. (Kyoto) 31, 1 (1964).

- ⁹T. R. McCalla, Introduction to Numerical Methods and Fortran Programming (Wiley, New York, 1967), Chap. 3, p. 92.
- ¹⁰Y. Ishikawa, T. Komatsubara, and E. Hirahara, Phys. Rev. Letters <u>23</u>, 10 (1969); <u>23</u>, 532 (1969).
- ¹¹W. C. Koehler, J. W. Cable, H. R. Child, M. K. Wilkinson, and E. O. Wollan, Phys. Rev. <u>158</u>, 450 (1967).
- ¹²S. L. Carr, P. Erdös, W. G. Moulton, and J. Robinson, Solid State Commun. 7, 1673 (1969).
- ¹³J. W. Stout and H. Y. Lau, J. Appl. Phys. <u>38</u>, 3 (1968); <u>38</u>, 1472 (1968).
- ¹⁴H. R. Child and W. C. Koehler, Appl. Phys. <u>40</u>, 1274 (1970).

PHYSICAL REVIEW B

VOLUME 2, NUMBER 7

1 OCTOBER 1970

Metallic Alloys and Exchange-Enhanced Paramagnetism. Application to Rare-Earth-Cobalt Alloys

D. Bloch and R. Lemaire

Laboratoire d'Electrostatique et de Physique du Métal, Centre National de la Recherche Scientifique, 38-Grenoble-Gare, France (Received 30 March 1970)

A phenomenological theory is presented of the magnetic properties of two-component alloys, one of whose components has a permanent magnetic moment, and the other an exchange-enhanced paramagnetic susceptibility. The paramagnetic susceptibility, magnetic-ordering temperature, and magnetization at low temperature are discussed in terms of this theory, and the results obtained are applied to cubic alloys $A{\rm Co}_2$ between rare earth (A) and cobalt.

INTRODUCTION

The behavior of intermetallic alloys between rare earths and transition metals is often complex. Cobalt does not possess a magnetic moment in YCo_2 or $LuCo_2$. In the alloys with magnetic rare earths, the magnetic moment of cobalt varies with the spin of the rare earth. In $GdCo_2$ or $TbCo_2$, the magnetic moments of the rare-earth and cobalt atoms are antiparallel, whereas in $NdCo_2$ or $PrCo_2$ they are ferromagnetically aligned.

We present a phenomenological theory for these alloys, and using this theory we study their para-

magnetic susceptibility, magnetic-ordering temperature, and magnetization at low temperature.

I. MODEL AND ITS MAIN CONSEQUENCES

We consider an alloy formed with two types of atoms, A and B, located in two different crystallographic sites. We assume that A possesses a well-localized magnetic moment and that B gives rise, in the crystal, to electronic energy bands leading to an exchange-enhanced paramagnetic susceptibility. In the high-temperature range, the magne-

tizations of A and B atoms, in an applied magnetic field H, are

$$M_A = (C_A/T)(H + n_{AA}M_A + n_{AB}M_B)$$
, (1)

$$M_B = \chi_{B,0} (H + n_{BB} M_B + n_{AB} M_A)$$
, (2)

where $\chi_{B,0}$ is the paramagnetic susceptibility; C_A is the Curie constant of the A atoms; and n_{AA} , n_{BB} , and n_{AB} are molecular-field coefficients which represent exchange interactions inside A and B sublattices and between these two sublattices. When the magnetization of the A atoms is equal to zero, then the total susceptibility is the exchange-enhanced susceptibility

$$\chi_{y} = M_{B}/H = \chi_{B,0}/(1 - n_{BB}\chi_{B,0})$$
 (3)

From Eqs. (1)-(3) one obtains for the susceptibility of the sample,

$$\chi = [C_A + \chi_v(T - EC_A)]/(T - \Theta_B) , \qquad (4)$$

with

$$E = n_{AA} - 2n_{AB} . ag{5}$$

The magnetic-ordering temperature Θ_B is given by

$$\Theta_B = (n_{AA} + n_{AB}^2 \chi_{\nu}) C_A . \tag{6}$$

In the neighborhood of Θ_B , in the magnetically ordered domains, the spontaneous magnetization of the B atoms is proportional to that of the A atoms, according to the relation

$$M_B = n_{AB} \chi_{\nu} M_A . (7)$$

At low temperature, the magnetization $M_{\it B}$ cannot

be considered as proportional to the magnetization M_A , because of the variation of χ_y with the magnetization M_B itself.

II. PARAMAGNETIC PROPERTIES OF ACo2 ALLOYS

Equation (4) for the paramagnetic susceptibility contains two parameters, E and χ_y ; Θ_B is the experimentally determined magnetic-ordering temperature. As a first approximation, these parameters are assumed to be temperature independent; $1/\chi$ as a function of temperature (3) for various $A\text{Co}_2$ alloys is shown in Fig. 1. The variation calculated from Eq. (4) with the E and χ_y parameters, as given in Table I, is shown in the same figure.

We see that two parameters are sufficient to give a good fit to the experimental curves. The χ_{ν} values obtained agree with the room-temperature values of the paramagnetic susceptibility of non-magnetic alloys YCo₂ (39×10⁻⁴ emu/mole), ¹ ScCo₂ (20×10⁻⁴ emu/mole), ³ and LuCo₂ (30×10⁻⁴ emu/mole).

In YNi₂, ScNi₂, or LuNi₂, the 3d electronic band is full, which give rise to a small susceptibility of the order of 3×10^{-4} emu/mole ^{3,5}; in YFe₂ or LuFe₂ the density of states at the Fermi level is large enough for the Stoner condition for ferromagnetism to be satisfied. In these compounds, iron possesses a magnetic moment of $1.45\,\mu_B$. ⁶

From Eqs. (5) and (6), we can deduce the values of n_{AA} and n_{AB} (Table I). It is more meaningful, however, to consider exchange-interaction coefficients J_{AA} and J_{AB} , since they are not spin depen-

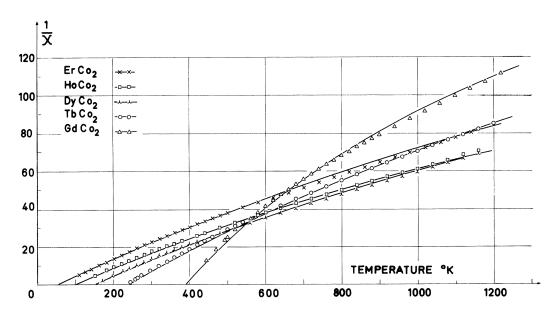


FIG. 1. Thermal variation of the inverse paramagnetic susceptibility of various ACo $_2$ alloys. Full curves are theoretical (see text). Data points are taken from Bloch et al. (Ref. 4).

TABLE I. Magnetic-ordering temperature, enhanced paramagnetic susceptibility, and main exchange-interaction coefficients of $A\mathrm{Co}_2$ alloys.

	$\Theta_B(K)$	χ_y (10 ⁻⁴ emu/mole)	E	J_{AA}	$-J_{AB}$
$GdCo_2$	395	36	170	60	- 140
$TbCo_2$	240	28	119	58	-159
DyCo_2	150	35	78.5	66	-140
$HoCo_2$	100	39	60	52	-140
ErCo ₂	60	33	40	66	-120

dent. Their values are given by

$$J_{AB} = g_J n_{AB} / (g_J - 1) \tag{8}$$

and

$$J_{AA} = (g_J)^2 n_{AA} / 2(g_J - 1)^2, \tag{9}$$

where g_J is the Landé factor associated with the J quantum number of the A rare earth.

The values J_{AA} and J_{AB} thus obtained (Table I) are homogeneous.

III. MAGNETIC-ORDERING TEMPERATURES AND MAGNETIZATION

The magnetic-ordering temperature Θ_B [Eq. (6)] can be considered as the sum of two contributions. One, $n_{AA}C_A$, comes from exchange interactions between the A atoms; the other, $n_{AB}^2C_A\chi_y$, is a con-

tribution from the B atoms. The two contributions are approximately equal in $A\mathrm{Co}_2$ alloys. A comparison with the Curie temperature of $A\mathrm{Ni}_2$ alloys indicates that rare-earth-rare-earth interactions are two times more important in $A\mathrm{Co}_2$ than in $A\mathrm{Ni}_2$, although the interatomic distances are almost identical. This indicates that the electrons of the incomplete 3d band participate in rare-earth-rare-earth exchange interactions.

When the magnetic moment of the transition metal is weak, one can consider its value as given by Eq. (6), which can be written

$$M_B = \frac{1}{2}J_{AB}\chi_{y}S_A.$$

In agreement with the experimental results, the magnetic moment of the transition metal is a function of the alloyed rare earth. It is equal to zero for YCo_2 , $LuCo_2$, or $ScCo_2$, and has its maximum value for $GdCo_2$.

If we take the values of $J_{AB}=-150$ and $\chi_y=35\times 10^{-4}$ (Table I), we obtain for cobalt in GdCo₂ a calculated magnetization at absolute zero of $0.91\mu_B$ compared with the experimental value $1.05\mu_B$; and for Co in PrCo₂, we obtain $0.26\mu_B$ compared with the experimental value 7 (0.50 ± 0.25) μ_B .

ACKNOWLEDGMENTS

The authors wish to thank Dr. B. Coqblin and Dr. R. Tournier for stimulating discussions.

¹R. Lemaire, Cobalt <u>33</u>, 201 (1966).

²R. M. Moon, W. C. Koehler, and J. Farrel, J. Appl. Phys. 36, 978 (1965).

³E. W. Collins, R. D. Smith, and R. G. Lecander, J. Less Common Metals <u>18</u>, 251 (1969).

⁴D. Bloch, E. Burzo, F. Chaissé, and F. Givord, J.

Phys. Radium (to be published).

⁵E. A. Strabek and W. E. Wallace, J. Appl. Phys. <u>34</u>, 1356 (1963).

⁶F. Givord and R. Lemaire (unpublished).

⁷J. Schweizer, Phys. Letters <u>24A</u>, 739 (1967).